Add like
Add dislike
Add to saved papers

Dual Contrast in Computed Tomography Allows Earlier Characterization of Articular Cartilage over Single Contrast.

Cationic computed tomography contrast agents are more sensitive for detecting cartilage degeneration than anionic or non-ionic agents. However, osteoarthritis-related loss of proteoglycans and increase in water content contrarily affect the diffusion of cationic contrast agents, limiting their sensitivity. The quantitative dual-energy computed tomography technique allows the simultaneous determination of the partitions of iodine-based cationic (CA4+) and gadolinium-based non-ionic (gadoteridol) agents in cartilage at diffusion equilibrium. Normalizing the cationic agent partition at diffusion equilibrium with that of the non-ionic agent improves diagnostic sensitivity. We hypothesize that this sensitivity improvement is also prominent during early diffusion time points and that the technique is applicable during contrast agent diffusion. To investigate the validity of this hypothesis, osteochondral plugs (d=8mm, N=33), extracted from human cadaver (n=4) knee joints, were immersed in a contrast agent bath (a mixture of CA4+ and gadoteridol) and imaged using the technique at multiple time points until diffusion equilibrium. Biomechanical testing and histological analysis were conducted for reference. Quantitative dual-energy computed tomography technique enabled the simultaneous determination of cartilage water and proteoglycan contents. The correlation coefficient between human articular cartilage proteoglycan content and CA4+ partition increased with the contrast agent diffusion time. Gadoteridol normalized CA4+ partition correlated significantly (p<0.05) with Mankin score at all time points and with proteoglycan content after 4 hours. The technique is applicable during diffusion, and normalization with gadoteridol partition improves the sensitivity of the CA4+ contrast agent. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app