Add like
Add dislike
Add to saved papers

A De Novo Mutation in MYH9 in a Child With Severe and Prolonged Macrothrombocytopenia.

Congenital macrothrombocytopenia is a diverse group of hereditary disorders caused by mutations in the MYH9 gene, which encodes the nonmuscle myosin heavy chain-A, an important motor protein in hemopoietic cells. Thus, the term MYH9-related disease has been proposed, but the clinicopathologic basis of MYH9 mutations has been poorly investigated. Here, we report a sporadic case of Epstein syndrome, an MYH9 disorder, in a 4-year-old Chinese boy who presented with macrothrombocytopenia. He had no family history of thrombocytopenia, hearing loss, or renal failure. A de novo heterozygous MYH9 mutation, c.287C>T; p. (Ser96Leu), was found in this patient. Genotype-phenotype analysis of all reported mutations suggested a domain-specific relationship between the location of the MYH9 mutation and the penetrance of the nonhematological characteristics of MYH9-related disorders. Our study highlights the importance of suspecting MYH9-related disease even in cases of chronic macrothrombocytopenia without a family history or extrahematological symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app