Add like
Add dislike
Add to saved papers

Biomechanical comparison of three different compression screws for treatment of odontoid fractures evaluation of a new screw design.

BACKGROUND: Lag screw osteosynthesis in odontoid fractures shows a high rate of pseudarthrosis. Biomechanical properties may play a role with insufficient fragment compression or unnoticed screw stripping. A biomechanical comparison of different constructed lag-screws was carried out and the biomechanical properties determined.

METHODS: Two identical compression screws with different pilot holes (1.25 and 2.5 mm), a double-threaded screw and one sleeve-nut-screw were tested on artificial bone (Sawbone, densities 10-30pcf). Fragment compression and torque were continuously measured using thin-film force sensors (Flexiforce A201, Tekscan) and torque sensors (PCE-TM 80, PCE GmbH).

FINDINGS: The lowest compression reached the double-threaded screw. Compression and sleeve-nut-screw achieved 214-298% and 325-546%, respectively, of the compression force of double-threaded-screw, depending on the test material. The pilot hole optimization led to a significant improvement in compression only in the densest test material. Screw stripping took place significantly later with increasing density of the test material on all screws. In compression screws this was done at a screw rotation of 180-270°, in sleeve nut screw at 270-720° and in double-threaded screws at 300-600° after reaching the maximum compression.

INTERPRETATION: Double-threaded screw is robust against screw stripping, but achieves only low fragment compression. The classic compression screws achieve better compression, but are sensitive to screw stripping. Sleeve-nut screw is superior in compression and as robust as double-threaded screw against screw stripping. Whether the better biomechanical properties lead to a reduction in pseudarthrosis must be proven in clinical trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app