Add like
Add dislike
Add to saved papers

Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin.

PURPOSE: This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway.

METHODS: Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation.

RESULTS: On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats.

CONCLUSION: Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β. Graphical Abstract A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor β-1 (TGF-β1). GSK3β is inhibited by phosphorylation at Ser9 . Under normal conditions, β-catenin is degraded in the cytoplasm by the active GSK3β-dependent degradation complex (un-phosphorylated) which usually phosphorylates β-catenin at Ser33/37/ Thr41 . After MI, TGF-β1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces β-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3β. TGF-β1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-β1 stabilizes cytoplasmic β-catenin levels indirectly by phosphorylation of Akt at Thr308 -induced inhibition of GSK3β by increasing phosphorylation of Ser9 . Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates β-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, β-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3β (activation), thus reduces fibrosis and prevents the activation of β-catenin and collagen deposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app