Add like
Add dislike
Add to saved papers

Molecular determinants of the interaction between glioblastoma CD133 + cancer stem cells and the extracellular matrix.

Glioblastoma multiforme (GBM) is the most common primary tumor of the human brain. It is characterized by invasive growth and strong resistance to treatment, and the median survival time of patients is 15 months. The invasive growth of this tumor type is associated with tumor cells with an aggressive phenotype, while its treatment resistance is attributed to cancer stem cells (CSCs). It remains unclear if CSCs have a more invasive nature than differentiated glioblastoma cells (DGCs), and what contribution CSCs make to the aggressive phenotype of GBM. Interaction with the extracellular matrix (ECM) is a key factor in the development of invasion. The aim of the present study was to compare the expression levels of signaling pathway proteins involved in interaction of receptors with the ECM in CSCs and DGCs. The U-87MG GBM cell line was used in the present study CSCs were extracted from gliomaspheres through magnetic-activated cell sorting based on the expression of cluster of differentiation 133 (CD133); CD133-negative DCGs were used as a control. HPLC and mass spectrometry were also used, and biological and molecular functions, signaling pathways and protein-protein interactions were analyzed using publicly available databases. Increased expression levels of the following 10 proteins involved in interaction with the ECM were identified in CSCs, compared with expression levels in DGCs: COL6A1, COL6A3, FN1, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3, LAMB1 and LAMC1. The proteome of CSCs was observed to have >2-fold higher expression of these key proteins, when compared with the DGC proteome. Increased expression levels of four proteins (FERMT2, LOXL2, HDAC2 and FBN1) involved in activating signaling in response to receptor interaction with the ECM was also observed, indicating that CSCs may have highly invasive nature. LOXL2 expression level was >9-fold higher in CSCs compared to DGCs, suggesting that this protein may have potential as an marker for CSCs and as a target for this cell type in GBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app