Where should the pins be placed to decrease the failure rate after fixation of a Mayo IIA olecranon fracture? A biomechanical analysis.
Injury 2020 May 20
BACKGROUND: Clinically, treatment of Mayo IIA olecranon fractures (MIOF) using pins is associated with a high rate of failure. The purpose of our study was to compare the biomechanical stability and strength of four different fracture fixation configurations and to recommend the best method for the clinical treatment of MIOFs.
METHODS: Twenty synthetic ulnar models were created and equally divided into 4 different fracture fixation groups: a double cortical configuration using Kirschner (K) wires; a double cortical configuration using transcortical pins; an intramedullary pin system; and an intramedullary pin system with a 3-mm distance between the eyelet and the proximal end of the olecranon (loose fixation). The stiffness and strength of all specimens were tested under a loading rate of 2 mm/min. Between-group differences were evaluated using an independent t-test, with significance set at P < 0.05.
RESULTS: Stiffness and strength were significantly better for the K-wire than intramedullary group: stiffness, 63.467±14.063 N/mm and 36.243±5.625 N/mm, respectively (P=0.009); and strength, 624.293±148.728 N and 406.486±74.109 N, respectively (P=0.019). There was no difference in stiffness (P=0.370) or strength (P=0.929) between the use of transcortical pins and K-wires. Moreover, a 3-mm prominence of the pin at the olecranon did not have a negative effect on either stiffness (P=0.494) or strength (P=0.391).
CONCLUSIONS: Our biomechanical analysis indicated that using a double cortical pin configuration provided the best stability and strength and, thus, may lower the risk of fracture fixation failure. The use of either K-wires or pins in the double cortical configuration did not influence fixation stability. A loose double cortical configuration might decrease fracture stability, although there differences were not significant.
METHODS: Twenty synthetic ulnar models were created and equally divided into 4 different fracture fixation groups: a double cortical configuration using Kirschner (K) wires; a double cortical configuration using transcortical pins; an intramedullary pin system; and an intramedullary pin system with a 3-mm distance between the eyelet and the proximal end of the olecranon (loose fixation). The stiffness and strength of all specimens were tested under a loading rate of 2 mm/min. Between-group differences were evaluated using an independent t-test, with significance set at P < 0.05.
RESULTS: Stiffness and strength were significantly better for the K-wire than intramedullary group: stiffness, 63.467±14.063 N/mm and 36.243±5.625 N/mm, respectively (P=0.009); and strength, 624.293±148.728 N and 406.486±74.109 N, respectively (P=0.019). There was no difference in stiffness (P=0.370) or strength (P=0.929) between the use of transcortical pins and K-wires. Moreover, a 3-mm prominence of the pin at the olecranon did not have a negative effect on either stiffness (P=0.494) or strength (P=0.391).
CONCLUSIONS: Our biomechanical analysis indicated that using a double cortical pin configuration provided the best stability and strength and, thus, may lower the risk of fracture fixation failure. The use of either K-wires or pins in the double cortical configuration did not influence fixation stability. A loose double cortical configuration might decrease fracture stability, although there differences were not significant.
Full text links
Trending Papers
Management of type 2 diabetes in the new era.Hormones : International Journal of Endocrinology and Metabolism 2023 September 14
Beta-blocker therapy in patients with acute myocardial infarction: not all patients need it.Acute and critical care. 2023 August
The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.Journal of Intensive Care 2023 May 24
Pharmacological Treatments in Heart Failure With Mildly Reduced and Preserved Ejection Fraction: Systematic Review and Network Meta-Analysis.JACC. Heart Failure 2023 August 26
Hypertensive Heart Failure.Journal of Clinical Medicine 2023 August 3
SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain.Journal of Cardiovascular Development and Disease 2023 July 31
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app