Add like
Add dislike
Add to saved papers

Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes.

A defining feature of eukaryotic cells is the presence of numerous membrane-bound organelles that subdivide the intracellular space into distinct compartments. How the eukaryotic cell acquired its internal complexity is still poorly understood. Material exchange among most organelles occurs via vesicles that bud off from a source and specifically fuse with a target compartment. Central players in the vesicle fusion process are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. These small tail-anchored (TA) membrane proteins zipper into elongated four-helix bundles that pull membranes together. SNARE proteins are highly conserved among eukaryotes but are thought to be absent in prokaryotes. Here, we identified SNARE-like factors in the genomes of uncultured organisms of Asgard archaea of the Heimdallarchaeota clade, which are thought to be the closest living relatives of eukaryotes. Biochemical experiments show that the archaeal SNARE-like proteins can interact with eukaryotic SNARE proteins. We did not detect SNAREs in α-proteobacteria, the closest relatives of mitochondria, but identified several genes encoding for SNARE proteins in γ-proteobacteria of the order Legionellales, pathogens that live inside eukaryotic cells. Very probably, their SNAREs stem from lateral gene transfer from eukaryotes. Together, this suggests that the diverse set of eukaryotic SNAREs evolved from an archaeal precursor. However, whether Heimdallarchaeota actually have a simplified endomembrane system will only be seen when we succeed studying these organisms under the microscope.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app