Add like
Add dislike
Add to saved papers

Recombinant glutathione-S-transferase A3 protein regulates the angiogenesis-related genes of erythrocytes in thiram induced tibial lesions.

Tibial dyschondroplasia (TD) is a skeletal deformity disease in broilers that occurs when vascularization in the growth plate (GP) is below normal. Although, blood vessels have been reported to contribute significantly in bone formation. Therefore, in the current study, we have examined the mRNA expression of angiogenesis-related genes in erythrocytes of thiram induced TD chickens by qRT-PCR and performed histopathological analysis to determine regulatory effect of recombinant Glutathione-S-Transferase A3 (rGSTA3) protein in response to the destructive effect of thiram following the injection of rGSTA3 protein. Histopathology results suggested that, blood vessels of GPs were damaged in thiram induced TD chicken group (D), it also affected the area and density of blood vessels. In the 20 and 50 μg·kg-1 of rGSTA3 protein-administered groups, E and F vessels appeared to be normal and improved on day 6 and 15. Furthermore, qRT-PCR results showed that rGSTA3 protein significantly (P < .05) up-regulated the expression of the most important angiogenesis-related integrin family genes ITGA2, ITGA5, ITGB2, ITGB3, ITGAV. The expression level of other genes including TBXA2R, FYN, IQGAP2, IL1R1, GIT1, RAP1B, RPL17, RAC2, MAML3, PTPN11, VAV1, PTCH1, NCOR2, CLU and ITGB3 up-regulated on dosage of rGSTA3 protein. In conclusion, angiogenesis is destroyed in thiram induced TD broilers, and rGSTA3 protein injection improved the vascularization of GPs by upregulating the angiogenesis related genes most importantly integrin family genes ITGAV, ITGA2, ITGB2, ITGB3, ITGA5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app