Add like
Add dislike
Add to saved papers

β1-adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent.

Noradrenaline (NA) promotes breakdown of the glucose-polymer, glycogen, and hence enhances glycolytic production of lactate in astrocytes. Here, in cultured rat cerebrocortical astrocytes, we examined the contributions of different adrenoceptor subtypes to NA-modulated glucose metabolism, and the relationship of NA-induced glycogenolysis to lactate production. Stimulation of astrocytic glucose metabolism by NA was mediated predominantly via β1-adrenoceptors and cAMP. Constitutive β 1-adrenoceptor activity - in the absence of exogenous NA - contributed to the basal rate of glycogen turnover. Although mRNAs encoding both β 1- and β 2-adrenoceptors were detected in these astrocytes, β 2-adrenoceptors contributed little to NA-induced modulation of glucose metabolism. Activation of α2- and α 1-adrenoceptors in these cells decreased cAMP and increased cytosolic Ca2+ , respectively, but did not modulate NA-induced glycogenolysis: α 2-adrenoceptors because glycogenolysis was induced maximally by NA concentrations that only began to inhibit cAMP production; and α 1-adrenoceptors possibly because of desensitisation and depletion of Ca2+ stores. Under basal conditions, astrocytes converted glucose to extracellular lactate in near stoichiometric manner. When glucose-starved astrocytes were given fresh glucose-containing medium, lactate accumulation displayed a brief lag period before attaining a steady-state rate. During this lag period NA, acting at β 1-adrenoceptors, increased the rate of lactate accumulation both in the absence and presence of an inhibitor of glycogen turnover. At the steady-state, the rate of glucose incorporation into accumulated glycogen was ∼5% of that into lactate, but NA enhanced lactate output by 20-50%: this further indicates that NA, via β 1-adrenoceptors and cAMP, can enhance astrocytic lactate production independently of its effect on glycogen turnover.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app