Add like
Add dislike
Add to saved papers

Citron C-05 inhibits both the penetration and colonization of Xanthomonas citri subsp. citri to achieve resistance to citrus canker disease.

Citrus canker, caused by Xanthomonas citri subsp. citri ( Xcc ), is a serious bacterial disease that affects citrus production worldwide. Citron C-05 ( Citrus medica ) is the only germplasm in the Citrus genus that has been identified to exhibit strong resistance to Xcc . However, it has not been determined when, where, and how Xcc is restricted in the tissues of Citron C-05 during the infection process. In the present study, we investigated the spatiotemporal growth dynamics of an eGFP -labeled virulent Xcc ( eGFP-Xcc ) strain in Citron C-05 along with five susceptible biotypes (i.e., lemon, pummelo, sour orange, sweet orange, and ponkan mandarin) upon inoculation via the spraying or leaf infiltration of a bacterial suspension. The results from extensive confocal laser scanning microscopy analyses showed that while Xcc grew rapidly in plants of all five susceptible genotypes, Xcc was severely restricted in the epidermal and mesophyll cell layers of the leaves of Citron C-05 in the early stage of infection. Not surprisingly, resistance against Xcc in Citron C-05 was found to be associated with the production of reactive oxygen species and hypersensitive response-like cell death, as well as greater upregulation of several defense-related genes, including a pathogenesis-related gene ( PR1 ) and a glutathione S-transferase gene ( GST1 ), compared with sweet orange as a susceptible control. Taken together, our results not only provide further valuable details of the spatiotemporal dynamics of the host entry, propagation, and spread of Xcc in both resistant and susceptible citrus plants but also suggest that resistance to Xcc in Citron C-05 may be attributed to the activation of multiple defense mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app