Add like
Add dislike
Add to saved papers

Effects of Prior Upper Body Exercise on the 3-min All-Out Cycling Test in Men.

INTRODUCTION: Prior upper body exercise reduces the curvature constant (W') of the hyperbolic power-duration relationship without affecting critical power. This study tested the hypothesis that prior upper body exercise reduces the work done over the end-test power (WEP; analog of W') during a 3-min all-out cycling test (3MT) without affecting the end-test power (EP; analog of critical power).

METHODS: Ten endurance-trained men (V˙O2max = 62 ± 5 mL·kg·min) performed a 3MT without (CYC) and with (ARM-CYC) prior severe-intensity, intermittent upper body exercise. EP was calculated as the mean power output over the last 30 s of the 3MT, whereas WEP was calculated as the power-time integral above EP.

RESULTS: At the start of the 3MT, plasma [La] (1.8 ± 0.4 vs 14.1 ± 3.4 mmol·L) and [H] (42.8 ± 3.1 vs 58.6 ± 5.5 nmol·L) were higher, whereas the strong ion difference (41.4 ± 2.2 vs 30.9 ± 4.6 mmol·L) and [HCO3] (27.0 ± 1.9 vs 16.9 ± 3.2 mmol·L) were lower during ARM-CYC than CYC (P < 0.010). EP was 12% lower during the 3MT of ARM-CYC (298 ± 52 W) than CYC (338 ± 60 W; P < 0.001), whereas WEP was not different (CYC: 12.8 ± 3.3 kJ vs ARM-CYC: 13.5 ± 4.1 kJ, P = 0.312). EP in CYC was positively correlated with the peak [H] (r = 0.78, P = 0008) and negatively correlated with the lowest [HCO3] (r = -0.74, P = 0.015).

CONCLUSIONS: These results suggest that EP during a 3MT in endurance-trained men is sensitive to fatigue-related ionic perturbation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app