COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of fluorescence characteristics of products of peroxidation of membrane phospholipids with those of products derived from reaction of malonaldehyde with glycine as a model of lipofuscin fluorescent substances.

The fluorescence characteristics of product (I), formed during the lipid peroxidation of rat liver phosphatidylcholine liposomes containing glycine, and fluorescent product (II), derived from the reaction of malonaldehyde with glycine, were examined to elucidate the mechanism of fluorescent chromophore formation. Fluorescent product (I) had a fluorescence emission maximum at 430 nm when excited at 360 nm; its fluorescence intensity decreases in alkaline medium, but is restored by readjustment of pH to neutrality. In contrast, fluorescent product (II) exhibited an emission maximum at 458 nm, and the fluorescence was quenched at acidic pH. The fluorescent substances formed during the lipid peroxidation of hemoglobin-free human erythrocyte ghost membranes had similar fluorescence characteristics to product (I). Gel filtration experiments showed that molecular size of fluorescent product (I) was larger than that of fluorescent product (II). The thiobarbituric acid-reactive substances released from peroxidizing liposomal phospholipids had a larger molecular size than malonaldehyde, and produced little or no fluorescence with glycine. It is concluded that the precursor of the fluorescent product formed during the lipid peroxidation of membrane phospholipids differs from malonaldehyde. The mechanism of the formation of blue emitting fluorescent material, believed to be a component of lipofuscin, seems to involve peroxidized phospholipids of the membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app