Add like
Add dislike
Add to saved papers

An early association between the α-helix of the TEAD binding domain of YAP and TEAD drives the formation of the YAP:TEAD complex.

Biochemistry 2020 April 25
The Hippo pathway is an evolutionarily conserved signalling pathway that is involved in the control of organ size and development. The TEAD transcription factors are the most downstream elements of the Hippo pathway, and their transcriptional activity is regulated via the interaction with different co-regulators such as YAP. The structure of the YAP:TEAD complex shows that YAP binds to TEAD via two distinct secondary structure elements, an α-helix and an Ω-loop, and site-directed mutagenesis experiments revealed that the Ω-loop is the "hot spot" of this interaction. While substantial knowledge has been gained on how YAP and TEAD interact with each other, little is known about the mechanism leading to the formation of a complex between these two proteins. Here we combine site-directed mutagenesis with pre-steady-state kinetic measurements to show that the association between these proteins follows an apparent one-step binding mechanism. Furthermore, linear free energy relationships and a Φ analysis suggest that binding-induced folding of the YAP α-helix to TEAD occurs independently of and before formation of the Ω-loop interface. Thus, the binding-induced folding of YAP appears not to conform to the concomitant formation of tertiary structure (nucleation-condensation) usually observed for coupled binding and folding reactions. Our findings demonstrate how a mechanism reminiscent of the classical framework (diffusion-collision) mechanism of protein folding may operate in disorder-to-order transitions involving intrinsically disordered proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app