Add like
Add dislike
Add to saved papers

Salvage use of tissue plasminogen activator (tPA) in the setting of acute respiratory distress syndrome (ARDS) due to COVID-19 in the USA: a Markov decision analysis.

BACKGROUND: COVID-19 threatens to quickly overwhelm our existing critical care infrastructure in the USA. Systemic tissue plasminogen activator (tPA) has been previously demonstrated to improve PaO2 /FiO2 (mmHg) when given to critically ill patients with acute respiratory distress syndrome (ARDS). It is unclear to what extent tPA may impact population-based survival during the current US COVID-19 pandemic.

METHODS: A decision analytic Markov state transition model was created to simulate the life critically ill COVID-19 patients as they transitioned to either recovery or death. Two patient groups were simulated (50,000 patients in each group); (1) Patients received tPA immediately upon diagnosis of ARDS and (2) patients received standard therapy for ARDS. Base case critically ill COVID-19 patients were defined as having a refractory PaO2 /FiO2 of < 60 mmHg (salvage use criteria). Transition from severe to moderate to mild ARDS, recovery, and death were estimated. Markov model parameters were extracted from existing ARDS/COVID-19 literature.

RESULTS: The use of tPA was associated with reduced mortality (47.6% [tTPA] vs. 71.0% [no tPA]) for base case patients. When extrapolated to the projected COVID-19 eligible for salvage use tPA in the USA, peak mortality (deaths/100,000 patients) was reduced for both optimal social distancing (70.5 [tPA] vs. 75.0 [no tPA]) and no social distancing (158.7 [tPA] vs. 168.8 [no tPA]) scenarios.

CONCLUSIONS: Salvage use of tPA may improve recovery of ARDS patients, thereby reducing COVID-19-related mortality and ensuring sufficient resources to manage this pandemic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app