Add like
Add dislike
Add to saved papers

Galectins in the brain: advances in neuroinflammation, neuroprotection and therapeutic opportunities.

PURPOSE OF REVIEW: Galectin interactions with glycoproteins and glycolipids modulate a variety of cellular responses that are now increasingly explored to better understand neuroinflammation processes and eventually find new therapeutic opportunities for neurological diseases.

RECENT FINDINGS: Gal-1 confirmed its indirect neuroprotective roles through anti-inflammatory properties whereas Gal-3 remains elusive, showing anti-inflammatory or pro-inflammatory roles depending on damaging conditions and genetic background of mice models. Interestingly, microglial intracellular rather than extracellular overexpression of Gal-3 arose as contributing to the pathogenesis of Huntington disease, involving NLRP3 inflammasome activation and inhibition of autophagic removal of damaged endolysosomes. Decreasing Gal-3 expression had favorable effects upon disease symptoms. Gal-3 expanded its role in this endolysosomal surveillance system originally involving Gal-8 and Gal-9, which protect cells against neuropathogenic proteins and becomes impaired or even detrimental under neurodegenerative conditions. Also, Gal-1, Gal-3 and Gal-4, together with changes in glycan structures define the outcome of neuroinflammation and remyelination processes. Gal-8 emerged as a new neuroprotector factor, which added to its immunosuppressive role and presence in human cerebrospinal fluid (CSF) may generate a neuroprotective environment in the brain.

SUMMARY: Galectins modulate neuroinflammation and neurodegenerative processes contributing to microglia polarization, immunosurveillance and neuroprotection through extracellular and intracellular interactions with particular and dynamic patterns of glycans, suggesting potential therapeutic targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app