Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neurotoxicity after hematopoietic stem cell transplant in multiple sclerosis.

OBJECTIVE: Accelerated brain volume loss has been noted following immunoablative autologous hematopoietic stem cell transplantation (IAHSCT) for multiple sclerosis. As with other MS treatments, this is often interpreted as 'pseudoatrophy', related to reduced inflammation. Treatment-related neurotoxicity may be contributory. We sought objective evidence of post-IAHSCT toxicity by quantifying levels of Neurofilament Light Chain (sNfL) and Glial Fibrillary Acidic Protein (sGFAP) before and after treatment as markers of neuroaxonal and glial cell damage.

METHODS: Sera were collected from 22 MS patients pre- and post-IAHSCT at 3, 6, 9, and 12 months along with 28 noninflammatory controls. sNfL and sGFAP quantification was performed using the SiMoA single-molecule assay.

RESULTS: Pre-IAHSCT levels of sNfL and sGFAP were elevated in MS patients compared with controls (geometric mean sNfL 21.8 vs. 6.4 pg/mL, sGFAP 107.4 vs. 50.7 pg/mL, P = 0.0001 for both). Three months after IAHSCT, levels of sNfL and sGFAP increased from baseline by 32.1% and 74.8%, respectively (P = 0.0029 and 0.0004). sNfL increases correlated with total busulfan dose (P = 0.034), EDSS score worsening at 6 months (P = 0.041), and MRI grey matter volume loss at 6 months (P = 0.0023). Subsequent NfL levels reduced to less than baseline (12-month geometric mean 11.3 pg/mL P = 0.0001) but were still higher than controls (P = 0.0001). sGFAP levels reduced more slowly but at 12 months were approaching baseline levels (130.7 pg/mL).

INTERPRETATION: There is direct evidence of transient CNS toxicity immediately after IAHSCT which may be chemotherapy mediated and contributes to transient increases in MRI atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app