An efficient pattern growth approach for mining fault tolerant frequent itemsets

Shariq Bashir
Expert Systems with Applications 2020 April 1, 143: 113046
Mining fault tolerant (FT) frequent itemsets from transactional databases are computationally more expensive than mining exact matching frequent itemsets. Previous algorithms mine FT frequent itemsets using Apriori heuristic. Apriori-like algorithms generate exponential number of candidate itemsets including the itemsets that do not exist in the database. These algorithms require multiple scans of database for counting the support of candidate FT itemsets. In this paper we present a novel algorithm, which mines FT frequent itemsets using frequent pattern growth approach (FT-PatternGrowth). FT-PatternGrowth adopts a divide-and-conquer technique and recursively projects transactional database into a set of smaller projected transactional databases and mines FT frequent itemsets in each projected database by exploring only locally frequent items. This mines the complete set of FT frequent itemsets and substantially reduces those candidate itemsets that do not exist in the database. FT-PatternGrowth stores the transactional database in a highly condensed much smaller data structure called frequent pattern tree (FP-tree). The support of candidate itemsets are counted directly from the FP-tree without scanning the original database multiple times. This improves the processing speed of algorithm. Our experiments on benchmark databases indicates mining FT frequent itemsets using FT-PatternGrowth is highly efficient than Apriori-like algorithms.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"