Add like
Add dislike
Add to saved papers

Discovering Essential Multiple Gene Effects through Large Scale Optimization: an Application to Human Cancer Metabolism.

Computational modelling of metabolic processes has proven to be a useful approach to formulate our knowledge and improve our understanding of core biochemical systems that are crucial to maintaining cellular functions. Towards understanding the broader role of metabolism on cellular decision-making in health and disease conditions, it is important to integrate the study of metabolism with other core regulatory systems and omics within the cell, including gene expression patterns. After quantitatively integrating gene expression profiles with a genome-scale reconstruction of human metabolism, we propose a set of combinatorial methods to reverse engineer gene expression profiles and to find pairs and higher-order combinations of genetic modifications that simultaneously optimize multi-objective cellular goals. This enables us to suggest classes of transcriptomic profiles that are most suitable to achieve given metabolic phenotypes. We demonstrate how our techniques are able to compute beneficial, neutral or "toxic" combinations of gene expression levels. We test our methods on nine tissue-specific cancer models, comparing our outcomes with the corresponding normal cells, identifying genes as targets for potential therapies. Our methods open the way to a broad class of applications that require an understanding of the interplay among genotype, metabolism, and cellular behaviour, at scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app