How to study intertwined and autoregulated eukaryotic signal transduction pathways

Jürgen J Heinisch
FEBS Journal 2020 April 4
Mitogen-activated protein kinase (MAPK) pathways are a major means of eukaryotic cells to adapt to environmental changes, in the case of microorganisms, and to nutritional and hormonal signals, in the case of multicellular organisms. Numerous defects in such architecturally conserved pathways have been associated with different human cancers. These signaling cascades usually commence with sensors located in the plasma membrane, which through specific protein kinases activate a conserved tripartite MAPK module. Phosphorylation of their targets, that is, cytosolic proteins and/or transcription factors, then triggers the proper cellular response. In the model yeast Saccharomyces cerevisiae and other fungi, the cell wall integrity pathway (CWI) has been extensively studied and its components may serve as targets for antifungal drugs of clinical and agricultural importance. Another well-known MAPK cascade, the high osmolarity glycerol (HOG) pathway, is required to cope with osmotic stress. In the past decade, it has become increasingly evident that such pathways do not act in a linear top-down fashion, but are highly regulated by internal feedback mechanisms as well as by cross-pathway interactions. The work of Jiménez-Gutiérrez et al. in this issue provides an elegant way to identify new players in these complex networks. Comment on:

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"