Add like
Add dislike
Add to saved papers

Permanent conduction system pacing for congenitally corrected transposition of the great arteries: A Pediatric and Congenital Electrophysiology Society (PACES)/International Society for Adult Congenital Heart Disease (ISACHD) Collaborative Study.

BACKGROUND: Congenitally corrected transposition of the great arteries (CCTGA) is associated with spontaneous atrioventricular block and pacing-induced cardiomyopathy. Conduction system pacing is a potential alternative to conventional cardiac resynchronization therapy (CRT).

OBJECTIVE: The purpose of this study was to determine the outcomes of conduction system pacing for CCTGA.

METHODS: Retrospective data were collected from 10 international centers.

RESULTS: His bundle (HBP) or left bundle branch pacing (LBBP) was attempted in 15 CCTGA patients (median age 23 years; 87% male). Previous surgery had been performed in 8 and chronic ventricular pacing in 7. Conduction system pacing (11 HBP, 2 LBBP 2; nonselective in 10, selective in 3) was acutely successful in 13 (86%) without complication. In 9 cases, electroanatomic mapping was available and identified the distal His bundle and proximal left bundle branches within the morphologic left ventricle below the pulmonary valve separate from the mitral annulus. Median implant HV interval was 42 ms (interquartile range [IQR] 35-48), R wave 6 mV (IQR 5-18), and threshold 0.5 V (IQR 0.5-1.2) at median 0.5 ms. QRSd was unchanged compared to junctional escape rhythm (124 vs 110 ms; P = .17) and decreased significantly compared to baseline ventricular pacing (112 vs 164 ms; P <.01). At a median of 8 months, all patients were alive without significant change in pacing threshold or lead dysfunction. New York Heart Association functional class improved in 5 patients.

CONCLUSION: Permanent conduction system pacing is feasible in CCTGA by either HBP or proximal LBBP. Narrow paced QRS and stable lead thresholds were observed at intermediate follow-up. Unique anatomic characteristics may favor this approach over conventional CRT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app