Add like
Add dislike
Add to saved papers

Under stress conditions, pacu Piaractus mesopotamicus modulates the metabolic allostatic load even after Dolops carvalhoi challenge to maintain self-protection mechanisms.

Fish metabolic allostatic dynamics, when animal present physiological modifications that can be strategies to survive, are important for promoting changes to ensure whole body self-protection and survival in chronic states of stress. To determine the impact of sequential stressors on pacu (Piaractus mesopotamicus), fish were subjected to two trials of stressful treatments, administration of exogenous dietary cortisol, and parasite challenge. The first experiment consisted of a two-day acute stress trial and the second, an eight-day chronic stress trial, and after both experiments, fish parasite susceptibility was assessed with the ectoparasite Dolops carvalhoi challenge. Physiological changes in response to acute trial were observed in glycogen, cortisol, glucose, osmolarity, sodium, calcium, chloride, potassium, hematocrit, hemoglobin, red blood cells and mean corpuscular volume, and white blood cell (P < 0.05), whereas response to chronic trial were observed in glycogen, osmolarity, potassium, calcium, chloride, mean corpuscular volume, white blood cell, neutrophil, and lymphocyte (P < 0.05). Acute trials caused physiological changes, however those changes did not induce the consumption of hepatic glycogen. Chronic stress caused physiological changes that induced hepatic glycogen consumption. Under acute trial, stress experience was important to fish to achieve homeostasis after chronic stress. Changes were important to modulate the response to stressor, improve body health status, and overcome the extra stressor with D. carvalhoi challenge. The experiments demonstrate that pacu initiate strategic self-protective metabolic dynamics in acute states of stress that ensure the maintenance of important life processes in front of sequential stressors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app