Add like
Add dislike
Add to saved papers

Use of a biopolymer delivery system to investigate the influence of interleukin-4 on recruitment of neutrophils in equids.

OBJECTIVE: To use a biopolymer delivery system to investigate the ability of interleukin (IL)-4 to recruit neutrophils into subcutaneous tissues of equids.

ANIMALS: 16 horses and 2 ponies.

PROCEDURES: Animals were assigned to 3 experiments (6/experiment). Effects of recombinant equine (Req) IL-4 (100, 250, or 500 ng/site) versus a positive control (ReqIL-8; 100 ng, 250 ng, or 1 μg/site) and a negative control (Dulbecco PBSS or culture medium) on neutrophil chemotaxis were assessed after SC injection into the neck with an injectable biopolymer used as the vehicle. Tissue samples including the biopolymer plug were collected by biopsy at various time points from 3 hours to 7 days after injection. Neutrophil infiltration was evaluated by histologic scoring (experiments 1, 2, and 3) or flow cytometry (experiment 3).

RESULTS: Histologic neutrophil infiltration scores did not differ significantly among treatments at most evaluated time points. On flow cytometric analysis, log-transformed neutrophil counts in biopsy specimens were significantly greater for the ReqIL-8 treatment (1 μg/site) than the negative control treatment at 3 but not 6 hours after injection; results did not differ between ReqIL-4 and control treatments at either time point. Negative control treatments induced an inflammatory response in most equids in all experiments.

CONCLUSIONS AND CLINICAL RELEVANCE: Flow cytometry was a more reliable method to estimate neutrophil migration than histologic score analysis. The ReqIL-4 treatment did not induce a detectable neutrophil response, compared with the negative control treatment in this study. Evidence of inflammation in negative control samples suggested the biopolymer is not a suitable vehicle for use in equids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app