Journal Article
Review
Add like
Add dislike
Add to saved papers

An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids.

Sequences of 105 Aeromonas species plasmids were probed for acquired anti-microbial resistance (AMR) genes using a bioinformatics approach. The plasmids showed no positive linear correlation between size and GC content and up to 55 acquired AMR genes were found in 39 (37%) plasmids after in silico screening for resistance against 15 antibiotic drug classes. Overall, potential multiple antibiotic resistance (p-MAR) index ranged from 0.07 to 0.53. Up to 18 plasmids were predicted to mediate multiple drug resistance (MDR). Plasmids pS121-1a ( A. salmonicida ), pWCX23_1 ( A. hydrophila ) and pASP-a58 ( A. veronii ) harboured 18, 15 and 14 AMR genes respectively. The five most occurring drug classes for which AMR genes were detected were aminoglycosides (27%), followed by beta-lactams (17%), sulphonamides (13%), fluoroquinolones (13%), and phenicols (10%). The most prevalent genes were a sulphonamide resistant gene Sul1 , the gene aac (6')-Ib-cr (aminoglycoside 6'-N-acetyl transferase type Ib-cr) resistant to aminoglycosides and the blaKPC-2 gene, which encodes carbapenemase-production. Plasmid acquisition of AMR genes was mainly inter-genus rather than intra-genus. Eighteen plasmids showed template or host genes acquired from Pseudomonas monteilii , Salmonella enterica or Escherichia coli . The most occurring antimicrobial resistance determinants (ARDs) were beta-lactamase, followed by aminoglycosides acetyl-transferases, and then efflux pumps. Screening of new isolates in vitro and in vivo is required to ascertain the level of phenotypic expression of colistin and other acquired AMR genes detected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app