JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The multiple facets of the SMC1A gene.

Gene 2020 March 26
Structural Maintenance of Chromosomes (SMCs) are part of a large family of ring complexes that participates in a number of DNA transactions. Among SMCs, SMC1A gene is unique. It encodes a subunit of the cohesin-core complex that tethers sister chromatids together to ensure correct chromosome segregation in both mitosis and meiosis. As a member of the cohesin ring, SMC1A takes part in gene transcription regulation and genome organization; and it participates in the DNA Damage Repair (DDR) pathway, being phosphorylated by Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia and Rad3 Related (ATR) threonine/serine kinases. It is also a component of the Recombination protein complex (RC-1) involved in DNA repair by recombination. SMC1A pathogenic variants have been described in Cornelia de Lange syndrome (CdLS), a human rare disease, and recently SMC1A variants have been associated with epilepsy or resembling Rett syndrome phenotype. Finally, SMC1A variants have been identified in several human cancers. In this review, our current knowledge of the SMC1A gene has been summarized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app