OPEN IN READ APP
JOURNAL ARTICLE

Development of flavanone and its derivatives as topical agents against psoriasis: The prediction of therapeutic efficiency through skin permeation evaluation and cell-based assay

Ahmed Alalaiwe, Chwan-Fwu Lin, Chien-Yu Hsiao, En-Li Chen, Chien-Yu Lin, Wan-Chen Lien, Jia-You Fang
International Journal of Pharmaceutics 2020 March 24, 581: 119256
32220586
Flavonoids inhibit skin inflammation. Previous study suggests that the flavonoids with flavanone backbone were beneficial to penetrate into the skin. We aimed to investigate the possibility of psoriasis treatment by topically applied flavanone and its derivatives including naringenin, hesperetin, 6-hydroxyflavanone, flavanone, and 6-bromoflavone. The skin absorption of the compounds was determined by Franz cells. Molecular modeling was used to compute the physicochemical and molecular parameters of the penetrants in order to elucidate the correlation between structure and permeation. Among the compounds tested, flavanone showed the greatest skin absorption. The in vitro skin absorption predicted efficient skin targeting of 6-bromoflavone with minimal risk of circulation absorption. The permeation of naringenin was remarkably enhanced 13-fold in the barrier-defective skin mimicking inflamed skin. The penetrants with fewer hydrogen bond number, total polarity surface, and molecular volume were advantageous for facile skin absorption. In the cell-based study, IL-1β inhibition in imiquimod (IMQ)-stimulated keratinocytes was increased following the increase in compound lipophilicity. Naringenin, a flavanone analog with three hydroxyl moieties, could suppress IL-6 overexpression to baseline control. We assessed the anti-inflammatory potency of the chemicals in comparison with tacrolimus as reference in a psoriasis-like mouse model. Flavanone was found to mitigate scaling and epidermal hyperplasia at a higher level than naringenin. Flavanone lessened IL-6 overexpression by 80% in the psoriasiform plaque. The skin barrier function recorded by transepidermal water loss (TEWL) was recovered by naringenin but not flavanone. The experimental data indicate that naringenin and flavanone are potential candidates for anti-psoriatic therapy.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
32220586
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"