Add like
Add dislike
Add to saved papers

Δ 9 -Tetrahydrocannabinol (THC) Impairs CD8 + T Cell-Mediated Activation of Astrocytes.

CD8+ T cells can contribute to neuroinflammation by secretion of inflammatory cytokines like interferon γ (IFNγ) and tumor necrosis factor α (TNFα). Astrocytes, a glial cell in the brain, can be stimulated by IFNγ and TNFα to secrete the inflammatory cytokines, monocyte chemotactic protein 1 (MCP-1), interleukin 6 (IL-6), and interferon-γ inducible protein 10 (IP-10). Δ9 -Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in Cannabis sativa, possesses potent anti-inflammatory activity. The objective of this investigation was to assess the effects of THC treatment on CD8+ T cell-mediated activation of astrocytes. CD3/CD28/IFNα- stimulated CD8+ T cells were treated with vehicle (0.03% EtOH) or THC and cocultured with U251 astrocytes. IP-10+ , MCP-1+ , and IL-6+ astrocytes were quantified by flow cytometry. LegendPlex™ was used to measure cytokine secretion by CD8+ T cells and flow cytometry was employed to quantify IFNγ, TNFα, and lysosomal-associated membrane protein 1 (LAMP-1) expression. Recombinant TNFα and IFNγ were used to stimulate MCP-1, IP-10, IL-6 responses in U251 astrocytes, which were measured by flow cytometry. Treatment with THC reduced CD8+ T cell-mediated induction of IP-10 and IL-6 responses in U251 astrocytes but had no effect on MCP-1. THC treatment differentially affected T cell effector functions such that IFNγ and degranulation responses were sensitive to THC-mediated ablation while TNFα was not. Lastly, THC treatment reduced the IFNγ-induced IP-10 response but had no effect on TNFα-induced MCP-1 response in U251 astrocytes. The results suggest that cannabinoid treatment can selectively reduce certain CD8+ T cell responses that contribute to stimulation of astrocytes. Graphical Abstract Treatment with THC can abate CD8+ T cell-dependent neuroinflammatory processes by inhibiting CD8+ cell differentiation into effector cells, suppressing CD8+ effector cell function, and reducing activation of astrocytes by CD8+ T cell-derived inflammatory cytokines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app