Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape.

Despite breakthroughs achieved with cancer checkpoint blockade therapy (CBT), many patients do not respond to anti-programmed cell death-1 (PD-1) due to primary or acquired resistance. Human tumor profiling and preclinical studies in tumor models have recently uncovered transforming growth factor-β (TGFβ) signaling activity as a potential point of intervention to overcome primary resistance to CBT. However, the development of therapies targeting TGFβ signaling has been hindered by dose-limiting cardiotoxicities, possibly due to nonselective inhibition of multiple TGFβ isoforms. Analysis of mRNA expression data from The Cancer Genome Atlas revealed that TGFΒ1 is the most prevalent TGFβ isoform expressed in many types of human tumors, suggesting that TGFβ1 may be a key contributor to primary CBT resistance. To test whether selective TGFβ1 inhibition is sufficient to overcome CBT resistance, we generated a high-affinity, fully human antibody, SRK-181, that selectively binds to latent TGFβ1 and inhibits its activation. Coadministration of SRK-181-mIgG1 and an anti-PD-1 antibody in mice harboring syngeneic tumors refractory to anti-PD-1 treatment induced profound antitumor responses and survival benefit. Specific targeting of TGFβ1 was also effective in tumors expressing more than one TGFβ isoform. Combined SRK-181-mIgG1 and anti-PD-1 treatment resulted in increased intratumoral CD8+ T cells and decreased immunosuppressive myeloid cells. No cardiac valvulopathy was observed in a 4-week rat toxicology study with SRK-181, suggesting that selectively blocking TGFβ1 activation may avoid dose-limiting toxicities previously observed with pan-TGFβ inhibitors. These results establish a rationale for exploring selective TGFβ1 inhibition to overcome primary resistance to CBT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app