Add like
Add dislike
Add to saved papers

Vascular resistance arm of the baroreflex: methodology and comparison with the cardiac chronotropic arm.

Baroreflex response consists of cardiac chronotropic (effect on heart rate), cardiac inotropic (on contractility), venous (on venous return) and vascular (on vascular resistance) arms. Because of its measurement simplicity, cardiac chronotropic arm is most often analysed. The aim was to introduce a method to assess vascular baroreflex arm, and to characterize its changes during stress. We evaluated the effect of orthostasis and mental arithmetics (MA) in 39 (22 female, median age: 18.7 yrs.) and 36 (21 female, 19.2 yrs.) healthy volunteers, respectively. We recorded systolic and mean blood pressure (SBP and MBP) by volume-clamp method and R-R interval (RR) by ECG. Cardiac output (CO) was recorded using impedance cardiography. From MBP and CO, peripheral vascular resistance (PVR) was calculated. The directional spectral coupling and gain of cardiac chronotropic (SBP to RR) and vascular arms (SBP to PVR) were quantified. The strength of the causal coupling from SBP to PVR was significantly higher than SBP to RR coupling during whole protocol (P < 0.001). Along both arms, the coupling was higher during orthostasis compared to supine (P < 0.001 and P = 0.006), no MA effect was observed. No significant changes in the spectral gain (ratio of RR or PVR change to a unit SBP change) across all phases were found (0.111 ≤ P ≤ 0.907). We conclude that changes in PVR are tightly coupled with SBP oscillations via the baroreflex providing an approach for the baroreflex vascular arm analysis with a potential to reveal new aspects of blood pressure dysregulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app