Add like
Add dislike
Add to saved papers

FXR1 is a novel MRE11-binding partner and participates in oxidative stress responses.

Ataxia-telangiectasia (AT) and MRE11-defective Ataxia-telangiectasia-like disorder (ATLD) patients show progressive cerebellar ataxia. ATM, mutated in AT, can be activated in response to oxidative stress as well as DNA damage, which could be linked to disease-related neurodegeneration. However, the role of MRE11 in oxidative stress responses has been elusive. Here, we showed that MRE11 could participate in ATM activation during oxidative stress in an NBS1/RAD50-independent manner. Importantly, MRE11 was indispensable for ATM activation. We identified FXR1 as a novel MRE11-binding partner by mass spectrometry. We confirmed that FXR1 could bind with MRE11 and showed that both localize to the cytoplasm. Notably, MRE11 and FXR1 partly localize to the mitochondria, which are the major source of cytoplasmic reactive oxygen species (ROS). The contribution of FXR1 to DNA double-strand break damage responses seemed minor and limited to HR repair, considering that depletion of FXR1 perturbed chromatin association of homologous recombination repair factors and sensitized cells to camptothecin. During oxidative stress, depletion of FXR1 by siRNA reduced oxidative stress responses and increased the sensitivity to pyocyanin, a mitochondrial ROS inducer. Collectively, our findings suggest that MRE11 and FXR1 might contribute to cellular defense against mitochondrial ROS as a cytoplasmic complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app