Add like
Add dislike
Add to saved papers

Spinal cord demyelination in children: A diagnostic challenge in neuropaediatrics for a good outcome.

BACKGROUND: Biotinidase deficiency (BTD) is an autosomal recessive inborn error of metabolism provoking progressive biotin depletion, which causes, in turn, multiple carboxylase deficiency. Its infantile onset is characterized by intractable seizures associated with lethargy, psychomotor regression, hypotonia, feeding and respiratory problems, and cutaneous abnormalities.

CASE DESCRIPTION: We describe a 52-month-old female whose clinical and neuroradiological pictures were consistent with myelopathy, which is generally more frequent in older patients, as well as with symptoms of an infantile onset of biotinidase deficiency, revealed at 17 months.

RESULTS: A biochemical biotinidase test revealed a profound deficiency of biotinidase detecting a 10% residual enzymatic activity, which led to the diagnosis of BTD. Gene sequencing revealed a compound heterozigous mutation (c.454A > C/c.1612C > T).

CONCLUSION: Our findings suggest that even if myelopathy is uncommonly reported in BTD, and generally occurs in older children, its presence in childhood-onset floppiness should always be considered as a possible marker for an atypical presentation of BTD. Although, until recently, BTD myelopathy was believed to be prevalent in older children, a spinal cord involvement has also been described in at least nine cases in early infancy. Thus, another early diagnosis suggests that myelopathy may be more frequent than previously thought, and it is probably underdiagnosed because spinal MRI is not always routinely performed on these children. Early recognition of BTD disease is important as it would lead to prompt treatment, preventing irreversible brain damage and increasing the chances of complete recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app