Add like
Add dislike
Add to saved papers

Downregulation of lncRNA TUG1 attenuates inflammation and apoptosis of renal tubular epithelial cell induced by ischemia-reperfusion by sponging miR-449b-5p via targeting HMGB1 and MMP2.

Inflammation 2020 August
We aimed to evaluate the functions of long non-coding RNA taurine upregulated gene 1 (lncRNA TUG1) in renal ischemia-reperfusion (I/R) injury and identify the potential mechanisms. Pathological changes of renal tissues were examined using H&E staining after mimic renal I/R injury in vivo. The contents of serum renal functional parameters and inflammatory factors were measured. The expression of TUG1 and miR-449b-5p in renal tissues and HK-2 cells stimulated by I/R were detected. Then, the effects of TUG1 silencing on inflammation and apoptosis of cells were evaluated. Dual luciferase reporter assays were executed for determining the correlation between miR-449b-5p and TUG1, high mobility group box 1 (HMGB1), or matrix metalloproteinase 2 (MMP2). Subsequently, cells were co-transfected with miR-449b-5p mimic and pcDNA3.1 TUG1. The levels of inflammation, apoptosis, and the expression of HMGB1 and MMP2 were detected. The results revealed that renal tissues were obviously damaged after I/R accompanied by changes in renal functional markers and inflammatory factors. TUG1 was highly expressed whereas miR-449b-5p was lowly expressed. TUG1 silencing reduced the inflammation and apoptosis. Dual luciferase reporter assays confirmed that miR-449b-5p was a target of TUG1 as well as HMGB1 and MMP2 were direct targets of miR-449b-5p. Meanwhile, miR-449b-5p mimic presented the same results with TUG1 silencing, which were reversed after TUG1 overexpression. Moreover, MMP2 and HMGB1 expression was decreased after miR-449b-5p overexpression while that of was increased after TUG1 overexpression. These findings demonstrated that TUG1 silencing attenuates I/R-induced inflammation and apoptosis via targeting miR-449b-5p and regulating HMGB1 and MMP2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app