Add like
Add dislike
Add to saved papers

Dihydroartemisinin Prevents Distant Metastasis of Laryngeal Carcinoma by Inactivating STAT3 in Cancer Stem Cells.

BACKGROUND Accumulating evidence indicates that cancer stem cells (CSCs) are a minor subpopulation of cancer cells that may be the primary source of cancer invasion, migration, and widespread metastasis. MATERIAL AND METHODS We investigated the effects of dihydroartemisinin (DHA) on distant metastasis of laryngeal carcinoma and the relevant mechanism. In vitro, we used the Hep-2 human laryngeal squamous carcinoma cell line (Hep-2 cells) to assemble CSCs, using CD133 as the cell surface marker. Our data demonstrate that the CD133⁺ subpopulation of Hep-2 cells has greater invasion and migration capabilities than CD133⁻ cells. We also evaluated the effects of DHA, a newly defined STAT3 inhibitor, on the invasion and migration of CD133⁺ Hep-2 cells under hypoxia and IL-6 stimulation, both of which can activate STAT3 phosphorylation. RESULTS CSCs exhibited a significant decrease in the ability of migration and invasion upon the application of DHA, along with simultaneous alterations in related proteins, both in cultured cells and in xenograft tumors. The associated signaling proteins included phosphorylated STAT3 (p-STAT3), matrix metalloproteinase-9 (MMP-9), and E-cadherin, which are closely involved in cancer invasion and metastasis. In vivo, we found that DHA can reduce lung metastasis formation caused by CSCs and prolong survival in mice, and can inhibit STAT3 activation, downregulate MMP-9, and upregulate E-cadherin in lung metastatic tumors. CONCLUSIONS Taken together, our findings indicate that CSCs possess stronger invasive and metastatic capabilities than non-CSCs, and DHA inhibits invasion and prevents metastasis induced by CSCs by inhibiting STAT3 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app