Add like
Add dislike
Add to saved papers

Tandem anaerobic-aerobic degradation of ranitidine, diclofenac, and simvastatin in domestic sewage.

There is a consensus among scientists that domestic sewage treatment plants are the main sources of drugs entry into the aquatic environment. Therefore, this work studies the biodegradation of the drugs ranitidine (RNT), diclofenac (DCF), and simvastatin (SVT) (50 μg L-1 , each), in real domestic sewage, using a continuous anaerobic-aerobic reactor with immobilized biomass and an anaerobic batch reactor. The continuous anaerobic-aerobic reactor was operated for 6 months with hydraulic retention time (HRT) of 8 h. The initial degradation rates and the maximum oxidation capacities (MOC) of the system were estimated, achieving 90, 72, and 62% removals and 100, 93, and 72% of MOC for RNT, DCF and SVT, respectively, as well as 71% removal of soluble chemical oxygen demand (COD). RNT was degraded throughout the reactor, while DCF was degraded mainly in the two anaerobic chambers and SVT in the first anaerobic chamber. Anaerobic batches were used for the identification of biodegradation by-products (2,6-dichloro-N-(2-methylphenyl) aniline and simvastatin acid), the evaluation of the specific methanogenic activity (SMA) inhibition, and the estimation of acute and chronic ecotoxicities using the ECOSAR 1.11 software. The present study showed that, even at environmental concentrations, RNT, DCF, and SVT were capable of inhibiting the SMA. Lipophilicities dictated the behavior of those three drugs. The greater their lipophilicities, the greater the SMA inhibition and their ecotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app