Add like
Add dislike
Add to saved papers

An a posteriori Error Estimate for Scanning Electron Microscope Simulation with Adaptive Mesh Refinement.

The intensity variation in a scanning electron microscope is a complex function of sample topography and composition. Measurement accuracy is improved when an explicit accounting for the relationship between signal and measurand is made. Because the determinants of the signal are many, the theoretical understanding usually takes the form of a simulator. For samples with nonconducting regions that charge, one phase of the simulation is finite element analysis to compute the electric field. The size of the finite element mesh, and consequently computation time, can be reduced through the use of adaptive mesh refinement. We present a new a posteriori local error estimator and adaptive mesh refinement algorithm for the scanning electron microscope simulation. This error estimate is designed to minimize the error in the electron trajectories, rather than the energy norm of the error that traditional error estimators minimize. Using a test problem with a known exact solution, we show that the adaptive mesh can achieve the same error in electron trajectories as a carefully designed hand-graded mesh while using 3.5 times fewer vertices and 2.25 times less computation time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app