Add like
Add dislike
Add to saved papers

A multi-context CNN ensemble for small lesion detection.

In this paper, we propose a novel method for the detection of small lesions in digital medical images. Our approach is based on a multi-context ensemble of convolutional neural networks (CNNs), aiming at learning different levels of image spatial context and improving detection performance. The main innovation behind the proposed method is the use of multiple-depth CNNs, individually trained on image patches of different dimensions and then combined together. In this way, the final ensemble is able to find and locate abnormalities on the images by exploiting both the local features and the surrounding context of a lesion. Experiments were focused on two well-known medical detection problems that have been recently faced with CNNs: microcalcification detection on full-field digital mammograms and microaneurysm detection on ocular fundus images. To this end, we used two publicly available datasets, INbreast and E-ophtha. Statistically significantly better detection performance were obtained by the proposed ensemble with respect to other approaches in the literature, demonstrating its effectiveness in the detection of small abnormalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app