Add like
Add dislike
Add to saved papers

Toxicokinetics and analytical toxicology of flualprazolam: metabolic fate, isozyme mapping, human plasma concentration, and main urinary excretion products.

An increasing number of benzodiazepine-type compounds are appearing on the new psychoactive substances market. 8-Chloro-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (flualprazolam) represents a potent "designer benzodiazepine" that has been associated with sedation, loss of consciousness, memory loss, and disinhibition. The aims of the present study were to tentatively identify flualprazolam metabolites using in vitro incubations with pooled human liver S9 fraction or HepaRG cells by means of liquid chromatography-high resolution tandem mass spectrometry. Isozymes involved in phase I and II biotransformation were identified in vitro. Results were then confirmed using human biosamples of an 18-year old male who was submitted to the emergency department after suspected flualprazolam ingestion. Furthermore, the plasma concentration was determined using the standard addition method. Seven flualprazolam metabolites were tentatively identified. Several cytochrome P450 and UDP-glucuronosyltransferase isozymes, amongst them CYP3A4 and UGT1A4, were shown to be involved in flualprazolam biotransformation reactions and an influence of polymorphisms as well as drug-drug or drug-food interactions cannot be excluded. Alpha-hydroxy flualprazolam glucuronide, 4-hydroxy flualprazolam glucuronide, and the parent glucuronide were identified as most abundant signals in urine, far more abundant than the parent compound flualprazolam. These metabolites are thus recommended as urine screening targets. If conjugate cleavage was performed during sample preparation, the corresponding phase I metabolites should be added as targets. Both hydroxy metabolites can also be recommended for blood screening. The flualprazolam plasma concentration determined in the intoxication case was as low as 8 μg/L underlining the need of analytical methods with sufficient sensitivity for blood screening purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app