Add like
Add dislike
Add to saved papers

Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration.

Simulating components, precise porous three-dimensional structure and physico-mechanical properties of natural bone have become a vital direction in the development of bone tissue regeneration. This work focused on enhancing mechanical strength of scaffold materials for bone regeneration, a subject of serious attention in its fabrication. Hence, cellulose nanocrystals (CNC), possessing favorable biocompatibility and impressive mechanical properties, was selected to reinforce the nanocomposite scaffolds of gelatin / bioactive glass (BG-Gel) system. The porous composite BG-Gel-CNC, was simultaneously constructed by in-situ composite method and freeze drying technique. The results manifested that the scaffolds incorporated with CNC showed a desirable compressive strength compared to the control, better wettability, which is conducive to better adhesion, growth and proliferation of cells. In addition, appropriate porosity, pore connectivity and biocompatibility were also demonstrated. These findings therefore suggested their potential application to function as effective scaffold materials in bone tissue regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app