Add like
Add dislike
Add to saved papers

MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways.

OBJECTIVE: This study aimed to explore the role of miR-155-5p in middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y cells. In addition, this study also aimed to explore the underlying mechanisms to expect that miR-155-5p may be investigated as a new and effective diagnostic and therapeutic target for ischemic stroke.

MATERIALS AND METHODS: The in vivo MCAO/R rat model and in vitro OGD/R cell model were established. The miR-155-5p mRNA expression was detected by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR). Dual specificity ATPase (DUSP) 14 was predicted to be a potential target of miR-155-5p by TargetScan. The targeting relationship was confirmed by Luciferase assay. The cell viability was determined using the Cell Counting Kit-8 (CCK-8). The expression level of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) levels were detected by Enzyme-Linked Immunosorbent Assay (ELISA). Western blot was used to detect the protein expression of DUSP14, the apoptotic protein Cleaved cysteine-aspartic acid protease (caspase)-3, and Cleaved PARP, as well as nuclear factor kappa B (NF-κB) and MAPKs signaling pathways related proteins.

RESULTS: MiR-155-5p was upregulated in both MCAO/R rats and OGD/R-induced SH-SY5Y cells. MiR-155-5p knockdown inhibited OGD/R-induced cell injury and inflammation, as well as MCAO/R-induced brain injury. MiR-155-5p regulated the NF-κB and MAPKs signaling pathways by targeting DUSP14. DUSP14 knockdown partially reversed the protective effect of miR-155-5p knockdown on OGD/R-induced SH-SY5Y cell injury and inflammation.

CONCLUSIONS: MiR-155-5p accelerates cerebral I/R injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways. Inhibition of miR-155-5p significantly reduces apoptosis and brain injury. These results indicated that miR-155-5p plays a key role in cerebral I/R injury and has the potential to be explored as a new target for ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app