Add like
Add dislike
Add to saved papers

Soft robotic in the construction of prosthetic heart valve: a novel approach.

In this study, we describe the design, fabrication and computational testing of a new prosthetic device for aortic valve replacement. The device is an active stent composed of a silicone rubber during initial prototyping, with adaptation towards a hydrogel, poly-vinyl alcohol reinforced with bacterial cellulose nanofibres underway. The nature of the stent is soft robotic (SR), where an increase in internal pressure of the pneumatic network causes an increase in the internal diameter of the device. When working in tandem with the SR heart valve, described briefly, pulsations of the blood and the energy gained from ventricular pressure actuates the valve-and-stent combination. This increases the effective orifice area of the entire device and addresses an issue with small sized heart valves facing prosthesis-patient mismatch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app