JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information.

Brain Research 1988 December 7
The activity of 294 single units was recorded from the dorsolateral prefrontal cortex of monkeys performing two visual discrimination tasks with delayed response. One task, delayed matching-to-sample (DMS), required memory of a colored cue for later (18 s) matching and choice of color; the cue did not connote the location of the delayed response. The other task, delayed conditional position discrimination (DCPD), required memory of a colored cue for later (18 s) choice of spatial response; the cue did connote delayed-response location. All 4 cues (red and green in DMS, yellow and blue in DCPD) were isoluminous and appeared in identical location at trial start. Differential unit reactions to the two DCPD cues were more common than those to the two DMS cues (samples). During the delay period, 15% of all units showed, in one task or the other, differential discharge depending on the cue. In DCPD, a large proportion of the units showing direction-related activity at the time of motor response also reacted with a firing frequency change to one or both (spatially identical) trial-initiating cues. Some units showed coherence of cue-related and response-related changes in accord with the behavioral association between color and direction of response (i.e., yellow-right, blue-left). The reactivity of some units was correlated with the behavioral performance of the tasks in terms of correctness or incorrectness of response. The results indicate that, during visual delay tasks, neurons in the dorsolateral prefrontal cortex may process both spatial and non-spatial information. Because of their protracted differential discharge between cue and response (i.e., during the delay), some units seem involved in the transfer of sensory information across time. These findings suggest the role of prefrontal neurons in the representation of multiple attributes of sensory stimuli, including their associated motor connotations, and the overlap of the cortical representations of different attributes. They are also consistent with the role of the prefrontal cortex in the cross-temporal mediation of sensory-motor contingencies and, therefore, the temporal organization of behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app