Add like
Add dislike
Add to saved papers

HIV influences microtubule associated protein-2: Potential marker of HIV-associated neurocognitive disorders.

AIDS 2020 Februrary 18
OBJECTIVE: Postmortem brains of subjects diagnosed with human immunodeficiency virus-1 (HIV) associated neurocognitive disorders (HAND) exhibit loss of dendrites. However, the mechanisms by which synapses are damaged are not fully understood.

DESIGN: Dendrite length and remodeling occurs via microtubules (MTs) the dynamics of which are regulated by microtubule binding proteins, including MT associated protein 2 (MAP2). The HIV protein gp120 is neurotoxic and interferes with neuronal MTs. We measured MAP2 concentrations in human cerebrospinal fluid (CSF) and MAP2 immunoreactivity in rat cortical neurons exposed to HIV and gp120.

METHODS: First, we examined whether HIV affects MAP2 levels by analyzing the CSF of 27 persons living with HIV (PLH) whose neurocognitive performance had been characterized. We then used rat cortical neurons to study the mechanisms of HIV-mediated dendritic loss.

RESULTS: PLH who had HAND had greater MAP2 concentrations within the CSF than cognitive normal PLH. In cortical neurons, the deleterious effect of HIV on MAP2 positive dendrites occurred through a gp120-mediated mechanism. The neurotoxic effect of HIV was blocked by a CCR5 antagonist and prevented by Helix-A, a peptide that displaces gp120 from binding to MTs, conjugated to a nanolipoprotein particle delivery platform.

CONCLUSIONS: Our findings support that HIV at least partially effects its neurotoxicity via neuronal cytoskeleton modifications and provide evidence of a new therapeutic compound that could be used to prevent the HIV-associated neuropathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app