JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Amplifiers co-translationally enhance CFTR biosynthesis via PCBP1-mediated regulation of CFTR mRNA.

BACKGROUND: Cystic fibrosis (CF) is a recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We previously described a first-in-class CFTR modulator that functions as an amplifier to selectively increase CFTR expression and function. The amplifier mechanism is distinct from and complementary to corrector and potentiator classes of CFTR modulators. Here we characterize the mechanism by which amplifiers increase CFTR mRNA, protein, and activity.

METHODS: Biochemical studies elucidated the action of amplifiers on CFTR mRNA abundance and translation and defined the role of an amplifier-binding protein that was identified using chemical proteomics.

RESULTS: Amplifiers stabilize CFTR mRNA through a process that requires only the translated sequence of CFTR and involves translational elongation. Amplifiers enrich ER-associated CFTR mRNA and increase its translational efficiency through increasing the fraction of CFTR mRNA associated with polysomes. Pulldowns identified the poly(rC)-binding protein 1 (PCBP1) as directly binding to amplifier. A PCBP1 consensus element was identified within the CFTR open reading frame that binds PCBP1. This sequence proved necessary for amplifier responsiveness.

CONCLUSIONS: Small molecule amplifiers co-translationally increase CFTR mRNA stability. They enhance translation through addressing the inherently inefficient membrane targeting of CFTR mRNA. Amplifiers bind directly to PCBP1, show enhanced affinity in the presence of bound RNA, and require a PCBP1 consensus element within CFTR mRNA to elicit translational effects. These modulators represent a promising new and mechanistically novel class of CFTR therapeutic. They may be useful as a monotherapy or in combination with other CFTR modulators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app