Add like
Add dislike
Add to saved papers

Pulse wave transit time during exercise testing reflects the severity of heart disease in cardiac patients.

The pulse wave transit time (PWTT) is easily measured as the time from the R wave of an electrocardiogram to the arrival of the pulse wave measured by an oxygen saturation monitor at the earlobe. We investigated whether the change of PWTT during exercise testing reflects cardiopulmonary function. Eighty-nine cardiac patients who underwent cardiopulmonary exercise testing (CPX) were enrolled. We analyzed the change of PWTT during exercise and the relationship between the shortening of the PWTT and CPX parameters. PWTT was significantly shortened from rest to peak exercise (204.6 ± 33.6 vs. 145.6 ± 26.4 msec, p < 0.001) in all of the subjects. The patients with heart failure had significantly higher PWTT at peak exercise than the patients without heart failure (152.7 ± 27.1 vs. 140.4 ± 24.8 msec, p = 0.031). The shortening of PWTT from rest to peak exercise showed significant positive correlations with the peak O<inf>2</inf> uptake (VO<inf>2</inf>) (r = 0.56, p < 0.001), anaerobic threshold (r = 0.40, p = 0.016), and % increase of systolic blood pressure during exercise (r = 0.75, p < 0.001), and a negative correlation with the slope of the increase in ventilation versus the increase in CO<inf>2</inf> output (VE-VCO<inf>2</inf> slope) (r = - 0.42, p = 0.010) in the patients with heart failure. PWTT was shortened during exercise as the exercise intensity increased. In the patients with heart failure, the shortening of PWTT from rest to peak exercise was smaller in those with lower exercise capacity and those with higher VE-VCO<inf>2</inf> slope, an established index known to reflect the severity of heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app