Add like
Add dislike
Add to saved papers

Simulated vaginal delivery causes transients vaginal smooth muscle hypersensitivity and urethral sphincter dysfunction.

BACKGROUND: Although pelvic floor dysfunction (PFD) has a multifactorial etiology, pregnancy and childbirth are considered crucial events predisposing to urinary incontinence as well as pelvic organ prolapse, which are highly prevalent. Rats are the most frequently used animal model and pudendal nerve crush (PNC) and vaginal distension (VD) are often used to mimic vaginal delivery.

OBJECTIVE: To document the time course of events after simulated vaginal delivery (SVD) on the urethral sphincter and the vaginal smooth muscle layer.

MATERIALS AND METHODS: Virgin female Sprague-Dawley rats were subjected to SVD (PNC + VD) or sham surgery and evaluated at 7, 14, 21, and 42 days after the injury. Urethral function was determined in vivo by microultrasound during cystometry and vaginal smooth muscle layer was harvested for in vitro pharmacologic investigation by isometric tension recording. Furthermore, vaginal and urethral samples were investigated by immunohistochemistry and real-time quantitative polymerase chain reaction.

RESULTS: Microultrasound showed no bursting of the urethral sphincter in the SVD group at 7 days with a functional recovery starting at 14 days, and normal bursting at 21 and 42 days. Vaginal smooth muscle showed higher sensitivity to carbachol at 14 and 21 days after injury; however, at 42 days, its sensitivity decreased when compared with sham.

CONCLUSION: SVD induces urethral dysfunction and a shift in vaginal smooth muscle contractile responses to carbachol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app