Add like
Add dislike
Add to saved papers

State recognition of decompressive laminectomy with multiple information in robot-assisted surgery.

The decompressive laminectomy is a common operation for treatment of lumbar spinal stenosis. The tools for grinding and drilling are used for fenestration and internal fixation, respectively. The state recognition is one of the main technologies in robot-assisted surgery, especially in tele-surgery, because surgeons have limited perception during remote-controlled robot-assisted surgery. The novelty of this paper is that a state recognition system is proposed for the robot-assisted tele-surgery. By combining the learning methods and traditional methods, the robot from the slave-end can think about the current operation state like a surgeon, and provide more information and decision suggestions to the master-end surgeon, which aids surgeons work safer in tele-surgery. For the fenestration, we propose an image-based state recognition method that consists a U-Net derived network, grayscale redistribution and dynamic receptive field assisting in controlling the grinding process to prevent the grinding-bit from crossing the inner edge of the lamina to damage the spinal nerves. For the internal fixation, we propose an audio and force-based state recognition method that consists signal features extraction methods, LSTM-based prediction and information fusion assisting in monitoring the drilling process to prevent the drilling-bit from crossing the outer edge of the vertebral pedicle to damage the spinal nerves. Several experiments are conducted to show the reliability of the proposed system in robot-assisted surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app