Add like
Add dislike
Add to saved papers

Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex.

The thalamic reticular nucleus (TRN), part of the thalamus, is a thin GABAergic cell layer adjacent to the relay nuclei of the dorsal thalamus. It receives input from the cortex and other thalamic nuclei and provides major inhibitory input to each thalamic nucleus, particularly the mediodorsal nucleus (MD). As the MD is important for supporting optimal cortico-thalamo-cortical interactions during brain maturation, we hypothesized that that early damage to the TRN will cause major disturbances to the development and the functioning of the prefrontal cortex (PFC) and the MD. Rat pups at P4 were randomized in three groups: electrolytic lesion of TRN, TRN-sham-lesion group, and the classical control group. Seven weeks later, all rats were tested with several behavioral and cognitive paradigms, and then perfused for histological and immunohistochemical studies. Results showed that TRN lesion rats exhibited reduced spontaneous activity, high level of anxiety, learning and recognition memory impairments. Besides the behavioral effects observed after early TRN lesions, our study showed significant cytoarchitectural and functional changes in the cingulate cortex, the dorsolateral and prelimbic subdivisions of the PFC, as well as in the MD. The assessment of the basal levels of neuronal activity revealed a significant reduction of the basal expression of C-Fos levels in the PFC. These experiments, which are the first to highlight the effects of early TRN lesions, provided evidence that early damage of the anterior part of the TRN leads to alterations that may control the development of the thalamocortical-corticothalamic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app