Add like
Add dislike
Add to saved papers

Early reduction of regulatory T cells is associated with acute rejection in liver transplantation under tacrolimus-based immunosuppression with basiliximab induction.

Treg cells are important in preventing acute rejection (AR) in solid organ transplantation, but the clinical relevance of the different kinetics early after liver transplantation (LT) in acute rejectors and non-rejectors is unclear. We analyzed peripheral blood samples of 128 LT recipients receiving basiliximab induction plus tacrolimus immunosuppression. Samples were obtained at pre-transplantation, D7, and D30 after LT. Frequency and phenotype of Tregs were analyzed by flow cytometry. The predictive value of Treg frequency at D7 was assessed for suspected acute rejection (SAR) and was validated for biopsy-proven AR (BPAR). We found that the frequencies of total and activated Tregs at D7 were significantly lower in recipients with SAR and BPAR. Treg was more reduced in BPARs by in vitro tacrolimus treatment in the presence of basiliximab. Moreover, an early reduction of Treg frequency in rejectors was associated with a greater increase in Treg apoptosis and further attenuated IL-2 signaling. D7 Treg frequency was an independent risk factor for SAR, which was also validated for BPAR. In conclusion, first-week peripheral blood Treg frequency correlates with AR after LT under tacrolimus-based immunosuppression, which needs to be proven in larger, geographically and clinically diverse populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app