Add like
Add dislike
Add to saved papers

Degradation and Biocompatibility of AZ31 Magnesium Alloy Implants In Vitro and In Vivo: A Micro-Computed Tomography Study in Rats.

Materials 2020 January 20
In current orthodontic practice, miniscrew implants (MSIs) for anchorage and bone fixation plates (BFPs) for surgical orthodontic treatment are commonly used. MSIs and BFPs that are made of bioabsorbable material would avoid the need for removal surgery. We investigated the mechanical, degradation and osseointegration properties and the bone-implant interface strength of the AZ31 bioabsorbable magnesium alloy to assess its suitability for MSIs and BFPs. The mechanical properties of a Ti alloy (TiA), AZ31 Mg alloy (MgA), pure Mg and poly-L-lactic acid (PLA) were investigated using a nanoindentation test. Also, pH changes in the solution and degradation rates were determined using immersion tests. Three-dimensional, high-resolution, micro-computed tomography (CT) of implants in the rat femur was performed. Biomechanical push-out testing was conducted to calculate the maximum shear strength of the bone-implant interface. Scanning electron microscopy (SEM), histological analysis and an evaluation of systemic inflammation were performed. MgA has mechanical properties similar to those of bone, and is suitable for implants. The degradation rate of MgA was significantly lower than that of Mg. MgA achieved a significantly higher bone-implant bond strength than TiA. Micro-CT revealed no significant differences in bone density or bone-implant contact between TiA and MgA. In conclusion, the AZ31 Mg alloy is suitable for both MSIs and BFPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app