Add like
Add dislike
Add to saved papers

Brain Differences in the Prefrontal Cortex, Amygdala, and Hippocampus in Youth with Congenital Adrenal Hyperplasia.

CONTEXT: Classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency results in hormone imbalances present both prenatally and postnatally that may impact the developing brain.

OBJECTIVE: To characterize gray matter morphology in the prefrontal cortex and subregion volumes of the amygdala and hippocampus in youth with CAH as compared to controls.

DESIGN: A cross-sectional study of 27 CAH youth (16 female; 12.6 ± 3.4 years) and 35 typically developing, healthy controls (20 female; 13.0 ± 2.8 years) with 3-T magnetic resonance imaging scans. Brain volumes of interest included bilateral prefrontal cortex and 9 amygdala and 6 hippocampal subregions. Between-subject effects of group (CAH vs. control) and sex, and their interaction (group-by-sex) on brain volumes, were studied while controlling for intracranial volume (ICV) and group differences in body mass index and bone age.

RESULTS: Congenital adrenal hyperplasia youth had smaller ICV and increased cerebrospinal fluid volume compared to controls. In fully-adjusted models, CAH youth had smaller bilateral superior and caudal middle frontal volumes, and smaller left lateral orbitofrontal volumes compared to controls. Medial temporal lobe analyses revealed that the left hippocampus was smaller in fully-adjusted models. Congenital adrenal hyperplasia youth also had significantly smaller lateral nucleus of the amygdala and hippocampal subiculum and CA1 subregions.

CONCLUSIONS: This study replicates previous findings of smaller medial temporal lobe volumes in CAH patients and suggests that the lateral nucleus of the amygdala, as well as subiculum and subfield CA1 of the hippocampus, are particularly affected within the medial temporal lobes in CAH youth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app