Add like
Add dislike
Add to saved papers

Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species.

Three algae polysaccharides (APs) extracted from Ascophyllum nodosum (ANP), Fucus vesiculosus (FVP) and Undaria Pinnatifida (USP) significantly differed in the zeta potential, water and oil holding capacity, monosaccharide composition, organic element composition, molecular weight distribution, microstructure and rheological properties. Antidiabetic effects of APs were compared by oral intervention at the dose of 400 mg/kg·body weight/day in high sugar and fat diets and streptozotocin injection induced type 2 diabetic rats. The analysis of body weight, water intake, fasting blood glucose, insulin, oral glucose tolerance, blood lipid indicators (including total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and free fatty acid (FFA)), liver function indexes (involving alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) and renal function profiles (comprising uric acid (UA) and urea nitrogen (BUN)) showed that APs possessed obvious antidiabetic activities, and FVP showed better effects in controlling the levels of FFA, AST, ALT, UA and BUN. Intervention of FVP reduced the total bile acid (TBA) level and elevated high density lipoprotein cholesterol (HDL-C) level of diabetic rats. Histomorphological observation further demonstrated that APs, especially FVP, could attenuate liver and kidney damage caused by diabetes. This study concluded that the antidiabetic effects of ANP, FVP and USP were distinctly different, which might be attributed to their different chemical structures. Therefore, the structure-activity relationship and antidiabetic mechanism of APs will be our future research direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app